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Accurate Analysis of Arbitrarily Shaped
Patch Resonators on Thin Substrates

THOMAS M. MARTINSON AND EDWARD F. KUESTER, MEMBER, IEEE

Abstract — Based on a generalized edge bounda~ condition (GEBC), an

accurate analysis method for arbitrarily shaped microstrip patch resonators

is developed. The edge of the patch and its feeding line are first discretized

as a series of connected segments. Next, an equivalent voltage and an

equivalent cu’rrent are defined on each segment. TIds boundary of the

patch and the feeding line can be viewed as an interface between two

networks. The first takes into account the coupling under the patch. The

second represents the dynamical edge effects and the coupling over the top

side of the patch. This general and computer-efficient approach is then

successfully applied to determine the input impedance of some commonly

used probe-fed and strip-fed patch resonators.

I. INTRODUCTION

A LTHOUGH MICROSTRIP patch resonators have

been studied extensively only in the last decade,

many different approaches have been proposed. We can

distinguish two general ways of carrying out the analysis.

In the first group, we find models relying strongly on some

physical insight, such as the transmission line model [1]-[3],

a geometrical theory of reflection [4], and the cavity model

[5]-[7]. These techniques yield fairly good results, but are

inherently limited to simple shapes even if some general-

izations are possible [8], [9]. Edge and feed effects are

included in an approximate way and the errors so intro-

duced are difficult to estimate.

In the second group, we have numerical techniques such

as segmentation [10], full-wave analysis [11], and methods

based on exact computation of the Green function

[12] -[14]. The segmentation model is well suited to arbi-

trary shapes but still cannot take the edge effects precisely

into account. Full-wave analysis, although rigorous, ap-

pears limited to simple shapes because of lengthy comput-

ing times. The Green function approach can handle almost

any shape of patch resonator. However, unknowns are

defined over the entire surface of the patch, often leading

to prohibitively large computing times.

In the CAD context, we need both accurate and com-

puter-efficient models able to analyze arbitrarily shaped

patch resonators with various feed mechanisms. Here, we

propose such a model based on a generalized edge

boundary condition (GEBC). The unknowns are defined
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Fig. 1. Arbitrarily shaped microstrip patch resonator.

along the edge of the structure only and thus the method

can be considered one-dimensional. This crucial feature is

the main reason behind the numerical efficiency.

We will start by describing the model used for the

arbitrarily shaped patch. Second, we analyze the probe-fed

patch in detail and the technique is then adapted to the

simpler case of the strip-fed resonator. Some comments are

also given on how to include losses. Finally, the present

theory is checked against previously published measured

results. The time convention e’u~ is used throughout.

II. DESCRIPTION OF THE PATCH

Consider an arbitrarily shaped microstrip patch reso-

nator as shown in Fig. 1. A local coordinate system

(ii., ii,, iiJ is defined everywhere along the edge. The

dielectric substrate (c,, pr) of thickness d is considered

electrically thin ( kOd(.s,p ,)1/2 -=s<1) such that only the

dominant TEM mode can propagate in the corresponding

parallel-plate waveguide. At each point along the edge, we

define an equivalent voltage V(l) and an equivalent cur-

rent 1(1 ) as follows:

V(l) = –dE:EM(/) (1)

A generalized boundary condition in integral form relates

these two quantities everywhere along the edge of the

structure, taking care of the dynamical edge effects and the
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Fig. 2. Interior and exterior regions.

mutual coupling between different edge points [15], [16]:

+ ;@’)[2if.iil]Gd(l, l’)d’
}

(3)

where P is the perimeter of the patch,

~–i/co(lp- p’12+d2)1/2

Gd(l, 1’) =
(lF-p’l’+~2)’/’ [P, F’GP]

and

[1l–x
F(x) =ln2+2xQo ~ –xln(2n)–l

‘ /t.=(.+opoy’.
This GEBC comes from an integral relation solved with

the assumption that the substrate is electrically thin (kd
<< 1). Comparisons with experimental results have shown

that this GEBC gives accurate results for patches at least

as thick as kd = 0.2. Thicker substrates bring new chal-

lenges, not limited to the present approach, such as diffi-

culties in modeling feed effects.

We can see the patch as the juxtaposition of two regions,

as shown in Fig. 2. The first, called the interior region, is

the dielectric volume bounded by the edge of the structure.

The second, called the exterior region, consists of the

entire space outside of the patch, the edge playing the role

of an interface between the two regions.

For the circuit designer, the input impedance of the

structure at various frequencies and in particular close to

resonance is the most important parameter to solve for.

The critical step in achieving this goal requires finding the

equivalent edge voltage. In order to carry out a numerical

solution, we must first discretize the arbitrarily ‘shaped

patch’s edge into a collection of N segments, as shown in

Fig. 3. The segments, not necessarily of equal length,

should model the patch as closely as possible. If we

Si

Fig. 3. Segmentation of the probe-fed patch.

consider a strip-fed resonator, a suitable portion of the

feed line must be included to take care of the junction

effects. Equivalent edge voltages and currents are replaced

along a given segment by the middle-point values. As a

result, we have an N-port interface connecting the interior

region and exterior region networks.

III. PROBE-FED PATCH: THE INTERIOR NETWCNC

Consider the Green function G satisfying the two-

dimensional wave equation in the parallel-plate region:

(v:+ k2)G(P>F’)=-~(iH’) (4)

where Vl is the transverse operator dXiiX + 8YZY; k is the

wavenumber in the dielectric, k = ko(e ~p,)1/2; and F =

xiiX + yZiY. It is well known that the solution of (4) is given

by

where HJ2) is the Hankel function of the second kind of

order O. The z-directed electric field EZZZ satisfies the

wave equation in the dielectric:

(v: + k2)Ez = itipoprJz (6)

where J= is a z-directed and z-independent current source.

Assuming uniform current distribution around the cir-

cumference of the probe, the current in the feed can be

considered as a line source:

J== If8(~–@ (7)

where ~, is the location of the center of the probe. Recall

Green’s theorem:

+( Gv~Ez - EzV~G) ds =$(G% - Ez~) dl (8)
s P

where S is the surface and P the perimeter of the patch.

We now combine (4)–(7) into (8) in a customary way to
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find the electrical field at an interior point:

~z(~) = – ywowf – FJ’1)

(9)

with fiGPand~@P.

As i5’ approaches the edge of the patch, we need a

careful evaluation, very similar to the one found in [17].

We find, after a limiting process [18],

(lo)

where now both D and F belong to the perimeter P.
Considering a locally straight edge, we can apply Fara-

day’s equation to relate the normal derivative of the z-

directed electric field to the tangential component of the

magnetic field at the edge:

Also, from geometrical considerations,

a [HJ2)(W-- Pq)]
an

= - k COS 6Hf2)(kl~ - ~1) (12)

where 0 is the angle defined between (D – ~) and ii.(~).

Directly from the above two equations and the equiv-

alences between field and circuit quantities (1) and (2), we

can rewrite (10) as

“’p;prdqr12)oclP/–N)v(r) = —

– ;fdl[w,w@2)(klP - 71)1(1)

+ikcos@2)(kl(j5 -ji’l)V(l)]. (13)

Introducing the discretization of the patch shown in Fig. 3,

j#i

where Ii is the edge coordinate of the middle point of

segment S,, ~, is the vector coordinate of the same point,

and $,, is the angle between (~ – j$ ) and ii.J, the unit

vector perpendicular to the segment S’, as shown in Fig. 3.

The relation (14) can be put in the following matrix form:

[Ul[vl=[q+[lm] (15)

where [V] and [1] are unknown column matrices, [ Vf ] is
the source column matrix, and [U] and [1?] are square

matrices.

IV. PROBE-FED PATCH: THE EXTERIOR NETWORX

We will use the same contour discretization for the

exterior problem as for the interior one. Thus, we can

rewrite the GEBC (3) with the help of (1) and (2) as

N

-1~(zi) == x ‘(z, )[a/l”a/J

ZJ=l

~–iko([p– p’12+d2)1/2

H. dl’ dl
q s, (,~-~,z+dz)l/2

“{
~–2ko(lzr– p’l*+d2)*/*

(lE,-~12+d’)1/’-
~–lko(lE, _*–p’12+d2)1/2

(lZ1_, -~’12+d2)1/2 1

(16)

where A i is the length of the segment Si, ii{i is the unit

vector tangent to the segment S,, and Zi = ~, + Zl,A, /2. In

this context, we found that a finite difference evaluation of

the edge derivatives was accurate enough. Defining h, =

(A, + Ai_J/2, we have

av ,+, ,_, +(h~+l-&)~ +O(h’)Jz;v+l -h’ K

37 ,=[, = fit~l+l(~,+fi,+l)

(17)

where ~ is a shorthand notation for V(li). After some

reorganization of the terms and incorporating the two
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above relations, (16) becomes We can immediately put (18) into a matrix form:

[1] = [S][u”] (19)

where [1] and [V] are the same unknown column vectors

as in (15) and [S] is a square matrix.

V. PROBE-FED PATCH: THE INPUT IMPEDANCE

The incident electric field E~ is given by the solution

of the wave equation (6) in an unbounded parallel plate

region:

[

1(1,) = :JA’dx @i-+-’’o(x2+d2_Az’_Az

1
(Xz+dz)w

[1A, “ ()
2iF L

iuo
:F(cr) +

P,
+— sinh-l — –

d
1

V(li)
Ir ~wo~2~L+l

[1()2iF L
P,— V(lj-~)

‘@UOhi(ht+hl+l)

H()Zif’_!P.—( )‘(zi+l)‘@P’ Ohi+l ‘i+ ‘1+1

The tangential electric field produced by If on the surface

of the probe of radius a is given by

In order to compute the input impedance, we must find

the tangential electric field on the surface of the probe. We

can consider this electric field as the sum of two terms,

namely an incident and a scattered field. The incident term

corresponds to the field produced by If in an infinite

parallel-plate region, evaluated at the surface of the probe.

The scattered term corresponds to the field “reflected” off

the boundary. As far as the scattered field is concerned, we

can approximate its value on the surface of the probe by
its value at the center of the feed D = Pf. Directly from (9),

with the source term removed,

+

+

“{
~–zko(E; +d2)’/2 ~–iko(F,2+d2)’12

(@+d2)1/2 - (F2+ d2)1/21 }
qHp(klF-Ff)llE— 1t)n ‘“

Replacing the field quantities by their equivalent circuit

counterparts (1) and (2), we can rewrite the above equation

as

+i
j=l

J+Z–l

“(
~–iko(E~+d2)’/2 ~–iko(F,2+d2)112

(E:+d2)1/2 - (Fz+d~)l/21 )

ihj– ~
+5

~sl 2~~lJoAzhj(~J-1+ hj
) ~.ldl’

j+i+l

“[

~–iko(E~+d2)’j2 ~-zko(F,2+d2) ’/2

)]
(@+d2)1/2 - (~,2+d2)1/2 ‘(lJ)z

where $ is the angle between (~ – ~f ) and ii.(~). The

input impedance is given by the following expression [19]:

E.llp-z,l=ad
Zin = –

*f

(22)

Therefore, based on (21) and (22), the input impedance

(18)
can be expressed as a contour integral:

‘p Oprd@z)( ka ) –Z,n =
4 *~d~fil’)(klF-Ffl)~(z)

fl’
where

+ ‘$dlcostH/2)(klP –Pfl)v(l).
4iIf P
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Fig. 4. Segmentation of the strip-fed patch.

Discretizing the contour, we can approximate the above

equation:

woPr~ (’) ~a)

Zin = y~o (

where $~ is the angle between (~~–~f) and ii~~. The

input impedance Zi~ can thus be easily computed once we

have solved for the edge vohages V(lk) and currents ~(zk).

Often, an interpolation of the edge voltages and current

proves helpful when the feed is located near the edge of

the patch. Directly based on the matrix equations (15) and

(19), we can solve for the unknown edge voltages:

{[ul-[lm]}[lq=[lq (24)

and (19) thereafter yields the edge currents. We can then

compute the input impedance Z,. as given by (23).

VI. STRIP-FED PATCH

The treatment of the strip-fed patch resonator follows

closely the approach used for the probe-fed patch. One of

the principal difficulties of earlier CAD models has been

to include the feed junction effects. Here, we solve this

difficulty by including a suitable portion of the feed in the

patch discretization. A feed length of A 0/16 is sufficient

in most cases. The feeding strip is then truncated and an

additional (N+ l)th segment is placed at the truncation, as

shown in Fig. 4.

Since the source term under the patch is absent, the
interior problem can be written in matrix form as

[U][V]+[U’]V(ZN+l) = [B][I]+[B’]I(ZN+J (25)

where we have segregated the quantities pertaining to the

(N+ l)th port. [U] and [B] are rectangular matrices with

(N+ 1) rows and N columns, [U’] and [B’] are column

vectors of dimension (N -I-1), and [V] and [1] are un-

known column vectors of dimension N. The exterior ma-

trix formulation is still given by (19) with [S] a square

matrix of dimension N. Without loss of generality, we can

normalize the input current at the (N+ l)th port to unity.

Therefore, the matrix equation to solve for V(lN+ J can be

written as

{[u]-[~][~]}[~]+[u’] v(zjv+,)= [B’]. (26)

Once this input voltage is obtained, the input impedance

Z,. follows directly:...
v(lN+~)

Zi~ = –
A“N+l

(27)

VII. DIELECTRIC AND CONDUCTOR LOSSES

Although losses are rather small in most applications,
,.

they still produce a noticeable effect on the real part of the

input impedance. A correct estimate of the losses is thus

important. We can easily take care of dielectric losses by

introducing a complex component of the permittivity. On

the other hand, conduction losses are more difficult to

evaluate. We have found a simple and satisfactory ap-

proach to include this effect based on an equivalent per-

meability of the substrate.

The basic idea is to recall well-known cavity perturba-

tion expressions for the frequency shift in a cavity in terms

of wall losses and magnetic losses [20]. As far as losses are

concerned, it is probably accurate enough to treat the

patch resonator as a cavity. Since the TEM field has no z

variation, we can easily relate surface and volume in-

tegrals. The frequency shift due to wall losses is given by

(.J/Lo ~/2’_ —

@-cdO=( l-i) J(–)
H.HO dV

v 20

u ad
j[

.—
CoErE. Eo – poprH. Ho] dV

v

where the subscript O identifies unperturbed quantities.

Similarly, the frequency shift due to a perturbation Ap is

/

——
ApH. HOdV

v=
6)

j[

——

qyr~.~o – poprH. Ho] dV
v

We can thus relate conductor losses to an equivalent

change in permeability:

f@= H’2[*+ji#-’)’28)
where Ut and u~ are the conductivity of the top patch and

ground plane, respectively.

VIII. COMPARISON WITH EXPERIMENTAL RESULTS

In order to check our theoretical results, we have made

several comparisons with previously published measured

results. In all cases where detailed information on the

experimental procedure was given, we were consistently

able to get good agreement. Here we present the results for
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Fig . 5. Circular strip-fed patch. (Dimensions in mm). c.= 2.62, tan 8 =

0.601, Ut = Ub = 2.9.107, d= 1.59 mm, feed.length = 3.0 cm, 84 segmenks.

S., tfi Chart
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● rneaiured [5]

Fig. 6. Input impedance of the circular patch. (Referenceplane at the
junction, 10 MHz increment.)

three different microstrip patch resonators. As a first ex-

ample, we have taken the strip-fed circular patch, shown in

Fig. 5. In Fig. 6, we see a good match with the measured

input impedance [5]. The strip-fed triangular patch, shown

in Fig. 7, gives a second comparison (Fig. 8). Finally, the

third example deals with the folded dipole resonator shown

in Fig. 9. This probe-fed patch provides a critical test of
our approach due to the mul$iplicit y of edge interactions

and the proximity between the feed and the edge. In this

example, we have chosen to look at the third resonance so

as to have an electrically thicker substrate. Here again, we

have good agreement with experimental results [21], as

shown in Fig. 10. A few comments will help in interpreting

153.6

~ 113.0

Fig. 7. Equilateral triangular strip-fed patch (dimensions in mm). c,=
2.62, tani3 = 0.001, o,= IJb= 2.9.107, d = 1.59 mm, feed length= 3.0

cm, 68 segments.

Sm)th Chart

+ calculated

● measured [5]

Fig. 8. Input impedance of the triangular patch. (Reference plane at the
junction, 10 MHz increment.)

the results:

1) The simplicity of the patch shapes analyzed here has

been dictated by the availability of measured results,

not the limitations of the theory. Since these results

were available on Smith charts, we have kept this

representation.
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Fig. 9. Probe-fed folded dipole patch (dimensions in mm). c,= 4.34,
tan 8 = 0.02, q = oh= 2.9.107, d = 0.8 mm, a = 0.5 mm, 128 segments.
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Fig. 10. Irmut imoedance of the folded dioole. (Third resonance. refer-

2)

3)

4)

‘ence a; the ground plane, 0.02 &3z increment.) ‘

It is probably reasonable to assume at least 0.5

percent experimental uncertainty on the resonant
frequency.

The influence of surface roughness on the conductiv-

ity of the metallic surfaces is difficult to estimate. We

have assumed the conductivity to be half that of bulk

copper.

The method proposed here is numerically efficient.

We can see this in two places. First, the elements of

the matrices are easily computed. In particular, the

numerical integrations require very few function

evaluations. Second, for large and complicated struc-

tures, the numerical efficiency is directly related to

the number of unknowns. Since this is true for most

numerical methods, an edge discretization will gener-

ally give smaller matrices, and thus lead to shorter

computing times.

IX. CONCLUSIONS

A new model has been developed to accurately predict

the input impedance of arbitrarily shaped microstrip patch

resonators. This computer-efficient approach leads to good

agreement between theoretical and experimental results for

a variety of commonly used patch shapes.

The method is easily adaptable to probe-type and strip-

type feeds. Furthermore, the model works always with the

actual parameters of the patch. In particular the feed is

modeled by its physical dimensions and no edge extensions

or equivalent dielectric constant are used. Finally we must

point out that the present theory is compatible with other

analysis techniques, such as segmentation, which is par-

ticularly attractive for CAD applications.
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