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Accurate Analysis of Arbitrarily Shaped
Patch Resonators on Thin Substrates

THOMAS M. MARTINSON AnND EDWARD F. KUESTER, MEMBER, IEEE

Abstract —Based on a generalized edge boundary condition (GEBC), an
accurate analysis method for arbitrarily shaped microstrip patch resonators
is developed. The edge of the patch and its feeding line are first discretized
as a series of connected segments. Next, an equivalent voltage and an
equivalent current are defined on each segment. This boundary of the
patch and the feeding line can be viewed as an interface between two
networks. The first takes into account the coupling under the patch. The
second represents the dynamical edge effects and the coupling over the top
side of the patch. This general and computer-efficient approach is then
successfully applied to determine the input impedance of some commonly
used probe-fed and strip-fed patch resonators.

I. INTRODUCTION

LTHOUGH MICROSTRIP paich resonators have

been studied extensively only in the last decade,
many different approaches have been proposed. We can
distinguish two general ways of carrying out the analysis.
In the first group, we find models relying strongly on some
physical insight, such as the transmission line model [1]-[3],
a geometrical theory of reflection [4], and the cavity model
[5}-[7]. These techniques yield fairly good results, but are
inherently limited to simple shapes even if some general-
izations are possible [8], [9]. Edge and feed effects are
included in an approximate way and the errors so intro-
duced are difficult to estimate.

In the second group, we have numerical techniques such
as segmentation [10], full-wave analysis [11], and methods
based on exact computation of the Green function
[12]-[14]. The segmentation model is well suited to arbi-
trary shapes but still cannot take the edge effects precisely
into account. Full-wave analysis, although rigorous, ap-
pears limited to simple shapes because of lengthy comput-
ing times. The Green function approach can handle almost
any shape of patch resonator. However, unknowns are
defined over the entire surface of the patch, often leading
to prohibitively large computing times.

In the CAD context, we need both accurate and com-
puter-efficient models able to analyze arbitrarily shaped
patch resonators with various feed mechanisms. Here, we
propose such a model based on a generalized edge
boundary condition (GEBC). The unknowns are defined
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Fig. 1.

Arbitrarily shaped microstrip patch resonator.

along the edge of the structure only and thus the method
can be considered one-dimensional. This crucial feature is
the main reason behind the numerical efficiency.

We will start by describing the model used for the
arbitrarily shaped patch. Second, we analyze the probe-fed
patch in detail and the technique is then adapted to the
simpler case of the strip-fed resonator. Some comments are
also given on how to include losses. Finally, the present
theory is checked against previously published measured
results. The time convention e*“’ is used throughout.

II. DESCRIPTION OF THE PATCH

Consider an arbitrarily shaped microstrip patch reso-
nator as shown in Fig. 1. A local coordinate system
(a,,a,a,) is defined everywhere along the edge. The
dielectric substrate (e¢,, 1) of thickness d is considered
electrically thin (kyd(e,p,)"/? <1) such that only the
dominant TEM mode can propagate in the corresponding
parallel-plate waveguide. At each point along the edge, we
define an equivalent voltage ¥(/) and an equivalent cur-
rent I(/) as follows:

V(1) = —dET() (1)

1(1) = HPM(T). @)

A generalized boundary condition in integral form relates
these two quantities everywhere along the edge of the
structure, taking care of the dynamical edge effects and the
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Fig. 2. Interior and exterior regions.

mutual coupling between different edge points [15], [16]:

10 = =2 - He)¥(0)

1

+ E.gSPV(l')[a;- a,16,(1, l')dl’}
N i BZV(I)F 1 .
'”wnu‘O 312 ”‘r

where P is the perimeter of the patch,

19 ,0V

>0 PWGd(l,l)dl}
(3)

o~ iko(B—p1P+d*)/?

Gd(l’ l’) = (|5_5/|2+d2)1/2 [59 EIEP]
and
1-x
F(x)=1n2+2xQ0[m]—x1n(277)—1

o0
Qo(x) = Y x"lnm
m=1
ko= "-’(‘oﬂo)lﬂ-

This GEBC comes from an integral relation solved with
the assumption that the substrate is electrically thin (kd
<« 1). Comparisons with experimental results have shown
that this GEBC gives accurate results for patches at least
as thick as kd =0.2. Thicker substrates bring new chal-
lenges, not limited to the present approach, such as diffi-
culties in modeling feed effects.

We can see the patch as the juxtaposition of two regions,
as shown in Fig. 2. The first, called the interior region, is
the dielectric volume bounded by the edge of the structure.
The second, called the exterior region, consists of the
entire space outside of the patch, the edge playing the role
of an interface between the two regions.

For the circuit designer, the input impedance of the
structure at various frequencies and in particular close to
resonance is the most important parameter to solve for.
The critical step in achieving this goal requires finding the
equivalent edge voltage. In order to carry out a numerical
solution, we must first discretize the arbitrarily shaped
patch’s edge into a collection of N segments, as shown in
Fig. 3. The segments, not necessarily of equal length,
should model the patch as closely as possible. If we
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Fig. 3. Segmentation of the probe-fed patch.

consider a strip-fed resonator, a suitable portion of the
feed line must be included to take care of the junction
effects. Equivalent edge voltages and currents are replaced
along a given segment by the middle-point values. As a
result, we have an N-port interface connecting the interior
region and exterior region networks.

111

Consider the Green function G satisfying the two-
dimensional wave equation in the parallel-plate region:

(v2+k2)G(p,5)=—8(p—P) (4)

where Vv, is the transverse operator 3,a,+ d,a; k is the
wavenumber in the dielectric, k=ky(e,n,)% and p=
xa, + ya,. It is well known that the solution of (4) is given
by

PROBE-FED PATCH: THE INTERIOR NETWORK

)

where H{® is the Hankel function of the second kind of
order 0. The z-directed electric field E,a, satisfies the
wave equation in the dielectric:

i
G(p.9) =~ 7H (klF —p)

(6)

where J, is a z-directed and z-independent current source.
Assuming uniform current distribution around the cir-
cumference of the probe, the current in the feed can be
considered as a line source:

(Vt2 + kz)Ez = iwp‘O""rJz

™

where p; is the location of the center of the probe. Recall
Green’s theorem:

0E

G
2 _ 2 — z _ —_—
ﬁ(GV,EZ EN2G)ds Sé(G -E, an)dl (8)

where S is the surface and P the perimeter of the patch.
We now combine (4)-(7) into (8) in a customary way to
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find the electrical field at an interior point:

P‘Op‘r
E(p)=-

HP(klp, — 7))

1 dE, J[HP(k|p- 5'|)]
. @) - _
+MﬁmL%(mppDa o» E,
9)

with pE P and p’' & P.

As p’ approaches the edge of the patch, we need a
careful evaluation, very similar to the one found in [17].
We find, after a limiting process {18],

wl“'OaU‘r
2

E(p) =~ LHP (klg,— 7)

3 [HP (ko - 7)) v ]
on z

1 JE
4 — O( L1 — 5 z_
%ﬁﬂp%(ﬂppDa

(10)

where now both p and p’ belong to the perimeter P.

Considering a locally straight edge, we can apply Fara-
day’s equation to relate the normal derivative of the z-
directed electric field to the tangential component of the
magnetic field at the edge:

d,E, (11)

= lw” okt rHI .
Also, from geometrical considerations,

d[HP(klp—p
[ 0 (a’ip P|)] = — kcosBH (K|p —

P (12)

where @ is the angle defined between (p — p’) and @,(p).
Directly from the above two equations and the equiv-
alences between field and circuit quantities (1) and (2), we
can rewrite (10) as

, wnu'OIJ‘rd — -
V(1) === LH?(kie,~P)

1
—_ 2) = =

pOV(D). (13)

Introducing the discretization of the patch shown in Fig. 3,

+ ik cos 0H® (k|(p —

Wi Onu'rd
2

V(li) = IfHo(z)(klﬁf_!_)il)

wnu‘Op‘r

zfmwwpmmw

ik N
-5 L [ dicost HO(kp-B)V(}) (14)
z s

J*Ei
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where [, is the edge coordinate of the middle point of
segment S,, p, is the vector coordinate of the same point,
and 6, is the angle between (p—p,) and a,,, the unit

vector perpendicular to the segment S, as shown in Fig. 3.
The relation (14) can be put in the following matrix form:

[Ullv]=[V]+[BII] (15)

where [V] and [/] are unknown column matrices, [V] is
the source column matrix, and [U] and [B] are square
matrices.

IV. ProBe-FeD PaTcH: THE EXTERIOR NETWORK

We will use the same contour discretization for the
exterior problem as for the interior one. Thus, we can
rewrite the GEBC (3) with the help of (1) and (2) as

iwe, N
I(li)=277_A0 ) a 'EIJ]
1=

—ikg(jp—p'f +d?)/?

~fwfﬂe ~ -
s s (Ip-p)P+d?)

(]

a*v(l)
awp, 312

D F(e,)-

=1

'

I

e~ tko(1&, 1 =B +d*) 2
)1/2

(1) i Nawn
F|—|+
%, 2‘77.(“>1U‘0At j= 1

I=1

7

—1ko(|&,~p'|>+d*)?

e

(e, - 7> +d

N2 (e -+ d

(16)

where A; is the length of the segment S,, a, is the unit
vector tangent to the segment S,, and e,=p,+ 4,4, /2. In
this context, we found that a finite difference evaluation of
the edge derivatives was accurate enough. Defining 4, =
(A, +A4A,_,)/2, we have

v W2V, — k2 W+ (k2 — D)V,
s - +1 +1 ( +1 ) +O(h2)
al =], z t+1(h1+ht+1)
o) _ArVtha i)V
812 [=1,_ hiht+1(hi+ht+1) ( )
(17)
where V, is a shorthand notation for V(/;). After some

reorganization of the terms and incorporating the two
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above relations, (16) becomes

iweg o (B~ x)e koG _A
(1) = f dx »
A, Jo (x*+d?)
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(F?+a?)"”

I

=12, 7’

= ‘éx—l - §,|2'

(18)
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We can immediately put (18) into a matrix form:

[1]=[S]lV] (19)
where [I] and [V] are the same unknown column vectors
as in (15) and [S] is a square matrix.

V. ProBe-FeDp PatcH: THE INPUT IMPEDANCE

The incident electric field E™ is given by the solution
of the wave equation (6) in an unbounded parallel plate
region:

inc wpopt, Iy ~ _
e =~ L B (5 - ).
The tangential electric field produced by /, on the surface -
of the probe of radius a is given by

- iz”—’ﬁngb(ka). (20)
In order to compute the input impedance, we must find
the tangential electric field on the surface of the probe. We
can consider this electric field as the sum of two terms,
namely an incident and a scattered field. The incident term
corresponds to the field produced by I, in an infinite
parallel-plate region, evaluated at the surface of the probe.
The scattered term corresponds to the field “reflected” off
the boundary. As far as the scattered field is concerned, we
can approximate its value on the surface of the probe by
its value at the center of the feed p = p;. Directly from (9),
with the source term removed,
_a[HP (k-7
dn =

Replacing the field quantities by their equivalent circuit
counterparts (1) and (2), we can rewrite the above equation
as

o
52(7,) = gt o B (K= ) 1(1)

kcosy

Ilp prl= a”

1 JE,
Ei(p) =5l [Hé”(km—ﬁfo 5

(21)

where ¢ is the angle between (p—p;) and a,(p). The
input impedance is given by the following expression [19]:

Elp-5,-ad (2)
If )

HO(klp—p ) V(1)

Z.

m

Therefore, based on (21) and (22), the input impedance
can be expressed as a contour integral:

wop,d uou,

— H (ka)— 222 ¢dm<2> ks —a)1(1)

ll'l

(2)
4l,f9$dicosw1 (klp =BV (1).
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Fig. 4. Segmentation of the strip-fed patch.

Discretizing the contour, we can approximate the above
equation:

wp o, d
Zo= —“%LHO@)(ka)

in

wpop,d Y _
- 'ZHO(Z)(klpk—pfl)AkI(lk)
a1, =

ik X
)

cos 1PkH1(2)(k|5k - l—)f|) AkV(lk) (23)
4y

where ¢, is the angle between (p, —p,) and a,,. The
input impedance Z,, can thus be easily computed once we
have solved for the edge voltages V(/,) and currents I(/,).
Often, an interpolation of the edge voltages and current
proves helpful when the feed is located near the edge of
the patch. Directly based on the matrix equations (15) and
(19), we can solve for the unknown edge voltages:

{lul-[BIIs1}[V]=[¥] (24)

and (19) thereafter yields the edge currents. We can then
compute the input impedance Z, as given by (23).

VI. Strip-FED PATCH

The treatment of the strip-fed patch resonator follows
closely the approach used for the probe-fed patch. One of
the principal difficulties of earlier CAD models has been
to include the feed junction effects. Here, we solve this
difficulty by including a suitable portion of the feed in the
patch discretization. A feed length of A, /16 is sufficient
in most cases. The feeding strip is then truncated and an
additional (N + 1)th segment is placed at the truncation, as
shown in Fig. 4.

Since the source term under the patch is absent, the
interior problem can be written in matrix form as

[UIVI+[UV(Iye) = [BILT]+[B11(Iy,,) (25)
where we have segregated the quantities pertaining to the
(N +1)th port. [U] and [B] are rectangular matrices with

(N +1) rows and N columns, [U’] and [B’] are column
vectors of dimension (N +1), and [V] and [I] are un-

known column vectors of dimension N. The exterior ma-
trix formulation is still given by (19) with [S] a square
matrix of dimension N. Without loss of generality, we can
normalize the input current at the (N + 1)th port to unity.
Therefore, the matrix equation to solve for V(/,, ) can be
written as

{[U]=-[BIISBV]+[UTV(lys) =[B]. (26)
Once this input voltage is obtained, the input impedance
Z,, follows directly:

V()

Zpy=——. (27)

AN~I'-1

VII.

Although losses are rather small in most applications,
they still produce a noticeable effect on the real part of the
input impedance. A correct estimate of the losses is thus
important. We can easily take care of dielectric losses by
introducing a complex component of the permittivity. On
the other hand, conduction losses are more difficult to
evaluate. We have found a simple and satisfactory ap-
proach to include this effect based on an equivalent per-
meability of the substrate.

The basic idea is to recall well-known cavity perturba-
tion expressions for the frequency shift in a cavity in terms
of wall losses and magnetic losses [20]. As far as losses are
concerned, it is probably accurate enough to treat the
patch resonator as a cavity. Since the TEM field has no z
variation, we can easily relate surface and volume in-
tegrals. The frequency shift due to wall losses is given by

wig\1/2 _ __
f( ”") H-Hyav
|4

DIELECTRIC AND CONDUCTOR LOSSES

w—w0~(1—i) —2—0_

© 9 (e BBy~ pop, H-Hy) av
14

where the subscript 0 identifies unperturbed quantities.
Similarly, the frequency shift due to a perturbation Ap is

fVAuH‘- Hydv

w — Wy

w

_/‘V[e()erE'EO "‘U,O‘U,rﬁ'ﬁo] av

We can thus relate conductor losses to an equivalent
change in permeability:

Tipo\t2[ 1 1 ,
A =—(——) —+—=1(1-i 28
where o, and o, are the conductivity of the top patch and
ground plane, respectively.

VIII.

In order to check our theoretical results, we have made
several comparisons with previously published measured
results. In all cases where detailed information on the
experimental procedure was given, we were consistently
able to get good agreement. Here we present the results for

COMPARISON WITH EXPERIMENTAL RESULTS
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u

Fig. 5. Circular strip-fed patch. (Dimensions in mm). €, = 2.62, tan8 =
0.001, 6, = 6;, = 2.9-107, d =1.59 mm, feed length = 3.0 cm, 84 segments.

Smith Chart

calculated

——

. measured [5]
Fig. 6.
. junction, 10 MHz increment.)

three different microstrip patch resonators. As a first ex-
ample, we have taken the strip-fed circular patch, shown in
Fig. 5. In Fig. 6, we see a good match with the measured
input impedance [5]. The strip-fed triangular patch, shown
in Fig. 7, gives a second comparison (Fig. 8). Finally, the
third example deals with the folded dipole resonator shown
in Fig. 9. This probe-fed patch provides a critical test of
our approach due to the multiplicity of edge interactions
and the proximity between the feed and the edge. In this
éxample, we have chosen to look at the third resonance so
as to have an electrically thicker substrate. Here again, we
have good agreement with experimental results [21], as
shown in Fig. 10. A few comments will help in interpreting

Inpuit impedance of the circular patch. (Reference plane at the

Fig. 8.

A

113.0

y

Fig. 7. Equilateral triangular strip-fed patch (dimensions in mm). €, =
2,62, tand = 0.001, o, =0, =2.9-107, d =159 mm, feed length =3.0
cm, 68 segments,

Smith Chart

calculated

——

. measured [5]

Input impedance of the triangular patch. (Reference plane at the
junction, 10 MHz increment.)

the results:

1) The simplicity of the patch shapes analyzed here has
been dictated by the availability of measured results,
not the limitations of the theory. Since these results
were available on Smith charts, we have kept this
reptesentation.
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Fig. 9. Probe-fed folded dipole patch (dimensions in mm). €, = 4.34,
tan 8 = 0.02, 0, = 0, = 2.9-107, d = 0.8 mm, a = 0.5 mm, 128 scgments.

Smy th Chart

Calculated

—>¢—

o Measured [21]

Fig. 10. Input impedance of the folded dipole. (Third resonance, refer-

ence at the ground plane, 0.02 GHz increment.)

2) It is probably reasonable to assume at least 0.5
percent experimental uncertainty on the resonant
frequency.

3) The influence of surface roughness on the conductiv-
ity of the metallic surfaces is difficult to estimate. We
have assumed the conductivity to be half that of bulk
copper.

4) The method proposed here is numerically efficient.
We can see this in two places. First, the elements of
the matrices are easily computed. In particular, the
numerical integrations require very few function
evaluations. Second, for large and complicated struc-
tures, the numerical efficiency is directly related to
the number of unknowns. Since this is true for most
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numerical methods, an edge discretization will gener-
ally give smaller matrices, and thus lead to shorter
computing times.

IX. CONCLUSIONS

A new model has been developed to accurately predict
the input impedance of arbitrarily shaped microstrip patch
resonators. This computer-efficient approach leads to good
agreement between theoretical and experimental results for
a variety of commonly used patch shapes.

The method is easily adaptable to probe-type and strip-
type feeds. Furthermore, the model works always with the
actual parameters of the patch. In particular the feed is
modeled by its physical dimensions and no edge extenstons
or equivalent dielectric constant are used. Finally we must
point out that the present theory is compatible with other
analysis techniques, such as segmentation, which is par-
ticularly attractive for CAD applications.
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